
Lee Kamin and Thomas Stout
EE 3173 - L01
Nios Assembly Language Programming
2/8/2005
Objective

One purpose of this lab was to familiarize students with assembly language programming for the Nios processor. Another purpose of this lab to give students an opportunity to compare code written in assembly with compiled code originally written in C to show how much more efficient code written in assembly is.
Procedure

The first part of the lab consisted of once again copying over the design for a Nios processor from a previous lab. After the design had been copied to a new folder, a multiplier to support the Nios MUL command was added to the design. The boot ID of the processor was also changed before the design was recompiled.

The next part of the lab was to write a “Hello World” program in both assembly and C. The compiled object files for the two programs were compared. Although both programs performed the same function, the program written in assembly was much smaller than the equivalent C program.

The final and most difficult section of the program was to write a program in assembly that read in a number of gallons, and converted this value to quarts, pints, and ounces. This section required the student to write code to read in a value from UART in ASCII format and convert it into a binary number, convert these numbers for the different units of output, and print out the results to the screen. The program also was required to respond to a special input of “00” to act as a terminating condition.
Discussion

The first section of the lab went well. It was easy to write the “Hello World” programs and get their size in bytes from the object dump files. As expected, the program written in assembly was much smaller than the program written in C. The assembly hello world program was 172 bytes and the C program was 2678 bytes.

The conversion program was not very difficult to write. Conversion to binary was done by subtracting the ASCII value of ‘0’ from the digits as they were read in. The new number was then either added to the running total directly, or multiplied by 10 before being added, depending on which digit it was that was read in.

Multiplication in the program was one of the more difficult sections to properly code. Although the MUL instruction had been added to the NIOS design, the output was giving erratic results. The need for the MUL instruction was easily avoided in converting to the different units because all the conversion factors were powers of two. Because of this, the number could just be shifted by a certain number of bits to perform the proper multiplication. The multiplication by 10 in the conversion from ASCII was more difficult. It was accomplished using partial multiplication, by adding together numbers that were multiples of two to multiply the original number by. In order for this to work, the input was first multiplied by 23, and then multiplied by 21. These results when added together gave the same result as multiplying the input by 10.

Using the built in function to write the values of the converted units back out to the screen was another more difficult section of the code. This was successfully completed by reading the documentation within the source files for the functions that were being used.

The completed program worked according to specifications, and the output for various inputs can be seen in table 1.

Table #1: Output From Conversion Program

[image: image1.emf]Gallons (dec)Gallons (Hex)Quarts (Hex)Pints (Hex)Ounces (Hex)

15 0F 3C 78 780

5 5 14 28 280

42 2A A8 150 1500

27 1B 6C D8 D80

37 25 94 128 1280

Consideration Questions
1. One application where it would be appropriate to use assembly code would be any application that had a small amount of storage space possible for instructions. This is because the Assembly code was much smaller than the C code. An example of this could be a small controller put in a car for some simple task. A second application where it would be helpful to use Assembly code would be any application that does not use many complex equations or loops that are made easier by using a higher level language. An example of this again could be a smaller controller for something in a car, or possibly a simple input/output program similar to what we designed in lab.
2. Our code for the conversion was only 82 lines long. The OBJDUMP file went from address 40000 to 40372. That means it used 882 bytes. Each instruction is two bytes, so the OBJDUMP file had 441 instructions in it. This means a little under 19% of the instructions were generated from our program. And about 81% of the instructions were from a macro. Using pre-defined routines in Assembly is different from using a high level language because the Assembly macro generates much less code than the high level language. The OBJDUMP from the C code for the hello world program was three times larger than the OBJDUMP file for the much more complex conversion Assembly OBJDUMP file. Another difference is that the pre-defined functions in a high level language do not depend on the instruction set. You can right a = b * c no matter how the instruction set executes the multiply command. In assembly, you can only use the code that the instruction set allows.
3. One place where the OBJDUMP file could be optimized to achieve greater performance than the C program would be combining some of the shift and multiply commands. We made our own simple MSTEP program to multiply by 10. There are much faster ways of multiplying then using MSTEP. A second place where the code could be optimized is the different shifts we perform. We essentially started over for each different conversion. We could have used the previous number we calculated.
4. The most difficult part of the exercise was trying to figure out the syntax of assembly language code that we had not used before. Another difficult part was trying to get the “mul” operation to work. Even though we turned it on with the SPOC builder, the command did not work in our program. This caused us to build our own smaller MSTEP function that multiplied by 10. What we learned from this exercise was how to use more of the Nios architecture. And also how to write a large assembly language program to be used on the Nios kit.

Conclusion

In this lab we saw first hand the differences in size between compiled code and code written directly in assembly. We also learned how properly call built in functions in assembly. In addition, we also gained general programming experience in assembly.

The program that was written could be used in a broader sense in any application that requires one type of unit to be converted to another.

References
EE 3173 Laboratory Exercise 3: Nios Assembly Language Programming
http://www.ece.mtu.edu/faculty/btdavis/827/lab3.pdf
Appendix A
TA sign-off sheet

_1169354312.xls
Sheet1

		Gallons (dec)		Gallons (Hex)		Quarts (Hex)		Pints (Hex)		Ounces (Hex)

		15		0F		3C		78		780

		5		5		14		28		280

		42		2A		A8		150		1500

		27		1B		6C		D8		D80

		37		25		94		128		1280

